6 research outputs found

    Event-triggered control for piecewise affine discrete-time systems

    Get PDF
    In the present work, we study the problems of stability analysis of piecewise-affine (PWA) discrete-time systems, and trigger-function design for discrete-time event-triggered control systems. We propose a representation for piecewise-affine systems in terms of ramp functions, and we rely on Lyapunov theory for the stability analysis. The proposed implicit piecewise-affine representation prevents the shortcomings of the existing stability analysis approaches of PWA systems. Namely, the need to enumerate regions and allowed transitions of the explicit representations. In this context, we can emphasize two benefits of the proposed approach: first, it makes possible the analysis of uncertainty in the partition and, thus, the transitions. Secondly, it enables the analysis of event-triggered control systems for the class of PWA systems since, for ETC, the transitions cannot be determined as a function of the state variables. The proposed representation, on the other hand, implicitly encodes the partition and the transitions. The stability analysis is performed with Lyapunov theory techniques. We then present conditions for exponential stability. Thanks to the implicit representation, the use of piecewise quadratic Lyapunov functions candidates becomes simple. These conditions can be solved numerically using a linear matrix inequality formulation. The numerical analysis exploits quadratic expressions that describe ramp functions to verify the positiveness of extended quadratic forms. For ETC, a piecewise quadratic trigger function defines the event generator. We find suitable parameters for the trigger function with an optimization procedure. As a result, this function uses the information on the partition to reduce the number of events, achieving better results than the standard quadratic trigger functions found in the literature. We provide numerical examples to illustrate the application of the proposed representation and methods.Ce manuscrit présente des résultats sur l’analyse de stabilité des systèmes affines par morceaux en temps discret et sur le projet de fonctions de déclenchement pour des stratégies de commande par événements. Nous proposons une représentation pour des systèmes affines par morceaux et l’on utilise la théorie de stabilité de Lyapunov pour effectuer l’analyse de stabilité globale de l’origine. La nouvelle représentation implicite que nous proposons rend plus simple l’analyse de stabilité car elle évite l’énumération des régions et des transitions entre régions tel que c’est fait dans le cas des représentations explicites. Dans ce contexte nous pouvons souligner deux avantages principaux, à savoir I) la possibilité de traiter des incertitudes dans la partition qui définit le système et, par conséquent des incertitudes dans les transitions, II) l’analyse des stratégies de commande par événements pour des systèmes affines par morceaux. En effet, dans ces stratégies les transitions ne peuvent pas être définies comme des fonctions des variables d’état. La théorie de stabilité de Lyapunov est utilisée pour établir des conditions pour la stabilité exponentielle de l’origine. Grâce à la représentation implicite des partitions nous utilisons des fonctions de Lyapunov quadratique par morceaux. Ces conditions sont données par des inégalités dont la solution numérique est possible avec une formulation par des inégalités matricielles linéaires. Ces formulations numériques se basent sur des expressions quadratiques décrivant des fonctions rampe. Pour des stratégies par événement, une fonctions quadratique par morceaux est utilisée pour le générateur d’événements. Nous calculons les paramètres de ces fonctions de déclenchement a partir de solutions de problèmes d’optimisation. Cette fonction de déclenchement quadratique par morceaux permet de réduire le nombre de d’événementsen comparaison avec les fonctions quadratiques utilisées dans la littérature. Nous utilisons des exemples numériques pour illustrer les méthodes proposées.No presente trabalho, são estudados os problemas de análise de estabilidade de sistemas afins por partes e o projeto da função de disparo para sistemas de controle baseado em eventos em tempo discreto. É proposta uma representação para sistemas afins por partes em termos de funções rampa, e é utilizada a teoria de Lyapunov para a análise de estabilidade. A representação afim por partes implícita proposta evita algumas das deficiências das abordagens de análise de estabilidade de sistemas afins por partes existentes. Em particular, a necessidade de anumerar regiões e transições admissíveis das representações explícitas. Neste contexto, dois benefícios da abordagem proposta podem ser enfatizados: primeiro, ela torna possível a análise de incertezas na partição, e, assim, nas transições. Segundo, ela permite a análise de sistemas de controle baseado em eventos para a classe de sistemas afins por partes, já que, para o controle baseado em eventos, as transições não podem ser determinadas como uma função das variáveis de estado. A representação proposta, por outro lado, codifica implicitamente a partição e as transições. A análise de estabilidade é realizada com técnicas da teoria de Lyapunov. Condi- ções para a estabilidade exponencial são então apresentadas. Graças à representação implícita, o uso de funções candidatas de Lyapunov se torna simples. Essas condições podem ser resolvidas numéricamente usando uma formulação de desigualdades matriciais lineares. A análise numérica explora expressões quadráticas que descrevem funções de rampa para verificar a postivividade de formas quadráticas extendidas. Para o controle baseado em eventos, uma função de disparo quadrática por partes define o gerador de eventos. Parâmetros adequados para a função de disparo sãoencontrados com um procedimento de otimização. Como resultado, esta função usa informação da partição para reduzir o número de eventos, obtendo resultados melhores do que as funções de disparo quadráticas encontradas na literatura. Exemplos numéricos são fornecidos para ilustrar a aplicação da representação e mé- todos propostos

    Controle baseado em eventos para sistemas em tempo discreto

    Get PDF
    Este trabalho aborda o problema de controle baseado em eventos para sistemas em tempo discreto, considerando que o sistema possui os dispositivos atuadores e sensores em nós diferentes e separados por uma rede de comunicação. A estratégia baseada em eventos consiste em reduzir a utilização da rede ao transmitir as informações do sensor para o atuador apenas quando um evento é gerado pela violação de um determinado limiar pela função de disparo. Primeiramente, são formuladas condições para a estabilidade de um sistema linear com realimentação estática de estados sob a estratégia proposta, com base na teoria de Lyapunov. Como as condições são postas na forma de desigualdades matriciais lineares (LMIs, do inglês linear matrix inequalities), problemas de otimização convexos podem ser utilizados na determinação dos parâmetros da função de disparo, bem como na resolução do problema de co-design, ou seja, do projeto simultâneo do controlador e da função de disparo, os quais são providos na sequência. A partir deste resultado básico, a metodologia é estendida para o caso em que ocorre a saturação do atuador. A seguir, é apresentada a extensão da metodologia para o caso em que o estado da planta não está disponível para o sensor, sendo então utlizado um observador de estados, considerando-se tanto o caso em que o modelo da planta utilizado no observador corresponde exatamente à dinâmica real da planta quanto o caso em que este modelo apresenta incertezas. Exemplos numéricos são apresentados para ilustrar todas as classes de sistemas consideradas, com os quais constata-se que a estratégia proposta é eficiente na redução da utilização dos recursos da rede de comunicação.This work approaches the problem of event-triggered control for discrete time systems, considering that the system has the actuator and sensor devices in different nodes, separated by a communication network. The event-triggered strategy consists in reducing the utilization of the network by only transmitting the information from the sensor to the actuator when an event is generated by the violation of a determined threshold by the trigger function. Firstly, conditions for the stability of a linear system with a static state feedback under the proposed strategy are formulated based on the Lyapunov theory. Since the conditions are given in the form of linear matrix inequalities (LMIs), convex optimization problems can be used for the determination of the trigger function parameters, as well as the co-design of the feedback gain and the trigger function, which are given next. From this basic result, the methodology is extended to the case where occurs the saturation of the actuator. Following, the extension of the methodlogy to the case in which the plant states are not available for measure is presented, and a state-observer is used, considering both the case that the plant model corresponds exactly to the real plant dynamics and the case where this model has uncertainties. Numeric examples are shown to illustrate all the system classes considered, with which it is found that the proposed strategy is efficient in the reduction of the network resources utilization

    Controle baseado em eventos para sistemas em tempo discreto

    Get PDF
    Este trabalho aborda o problema de controle baseado em eventos para sistemas em tempo discreto, considerando que o sistema possui os dispositivos atuadores e sensores em nós diferentes e separados por uma rede de comunicação. A estratégia baseada em eventos consiste em reduzir a utilização da rede ao transmitir as informações do sensor para o atuador apenas quando um evento é gerado pela violação de um determinado limiar pela função de disparo. Primeiramente, são formuladas condições para a estabilidade de um sistema linear com realimentação estática de estados sob a estratégia proposta, com base na teoria de Lyapunov. Como as condições são postas na forma de desigualdades matriciais lineares (LMIs, do inglês linear matrix inequalities), problemas de otimização convexos podem ser utilizados na determinação dos parâmetros da função de disparo, bem como na resolução do problema de co-design, ou seja, do projeto simultâneo do controlador e da função de disparo, os quais são providos na sequência. A partir deste resultado básico, a metodologia é estendida para o caso em que ocorre a saturação do atuador. A seguir, é apresentada a extensão da metodologia para o caso em que o estado da planta não está disponível para o sensor, sendo então utlizado um observador de estados, considerando-se tanto o caso em que o modelo da planta utilizado no observador corresponde exatamente à dinâmica real da planta quanto o caso em que este modelo apresenta incertezas. Exemplos numéricos são apresentados para ilustrar todas as classes de sistemas consideradas, com os quais constata-se que a estratégia proposta é eficiente na redução da utilização dos recursos da rede de comunicação.This work approaches the problem of event-triggered control for discrete time systems, considering that the system has the actuator and sensor devices in different nodes, separated by a communication network. The event-triggered strategy consists in reducing the utilization of the network by only transmitting the information from the sensor to the actuator when an event is generated by the violation of a determined threshold by the trigger function. Firstly, conditions for the stability of a linear system with a static state feedback under the proposed strategy are formulated based on the Lyapunov theory. Since the conditions are given in the form of linear matrix inequalities (LMIs), convex optimization problems can be used for the determination of the trigger function parameters, as well as the co-design of the feedback gain and the trigger function, which are given next. From this basic result, the methodology is extended to the case where occurs the saturation of the actuator. Following, the extension of the methodlogy to the case in which the plant states are not available for measure is presented, and a state-observer is used, considering both the case that the plant model corresponds exactly to the real plant dynamics and the case where this model has uncertainties. Numeric examples are shown to illustrate all the system classes considered, with which it is found that the proposed strategy is efficient in the reduction of the network resources utilization
    corecore